Finite Element Method Simulation of Machining of AISI 1045 Steel With A Round Edge Cutting Tool

نویسنده

  • Tuğrul Özel
چکیده

In this paper, FEM modeling and simulation of orthogonal cutting of AISI 1045 steel is studied by using dynamics explicit Arbirary Lagrangian Eulerian method. The simulation model utilizes the advantages offered by ALE method in simulating plastic flow around the round edge of the cutting tool and eliminates the need for chip separation criteria. JohnsonCook work material model is used for elastic plastic work deformations. A methodology developed to determine friction characteristics from orthogonal cutting tests is also utilized for chip-tool interfacial friction modeling. The simulation results include predicted chip formation as well as temperature and stress distributions. These results are highly essential in predicting machining induced residual stresses and other properties on the machined surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Experimental and Numerical Study of Hexagonal Cutting Of AISI 316L Steel Round Bars

Cutting processes can be used in batch production of polygonal bars with special features. In this paper, a new form of broaching process for cutting of hexagonal bars from raw round bars is discussed. Due to lack of rolled or drawn raw material, the final product is made of AISI 316L stainless steel bars having appropriate initial size. In this method, a fixed die is used as a tool, and by app...

متن کامل

Finite Element Simulation and Experiment of Chip Formation Process during High Speed Machining of AISI 1045 Hardened Steel

As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on th...

متن کامل

Finite Element Analysis of The Influence of Edge Roundness on The Stress and Temperature Fields Induced by High Speed Machining

High speed machining (HSM) may produces parts with substantially higher fatigue strength; increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the round cutting tool edge associated with induced stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. Cutting edge roundness may induce stress and tempera...

متن کامل

Numerical simulation of effects of machining parameters and tool geometry using DEFORM-3D: Optimization and experimental validation

This research work focusses on optimization of machining and geometrical parameters during turning AISI 1045 steel using carbide cutting tool insert, by Finite Element Analysis and Taguchi’s Technique. Three levels of cutting speed, feed rate, depth of cut, cutting insert shape, relief angle and nose radius are chosen. A suitable L18 Orthogonal array is selected based on Taguchi’s Design of Exp...

متن کامل

Effect of cutting parameters on tool-chip interface temperature in an orthogonal turning process

The aim of this paper is to investigate the effect of cutting speed and uncut chip thickness on cutting performance. A Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material mode and Coulombs friction law was used to simulate of High Speed Machining (HSM) of AISI 1045 steel. In this simulation work, feed rate ranging from 0.05 mm/rev to 0.13 mm/re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005